 Optical System for Measuring Metabolism in a Body
Packground of the Invention and Imaging Method

绿作成分法に関主
 で晤まれている。この要累に対し，光を用いた䛨测は非常に有効である。その莺

第二の理由は，炎は光ファイハによって吸いが㤕価であるからであこ，䄰三の至
 けられる。

体内部を羽定する落臨が，例えば，公闊特許公预，特開炤63－277038号，特間平 $5-300887$ 号然に記或されている。また，局さ100－200mm

 3162 ड号に記或されている。

 し，生竍からの琉過光盆度あるいは处时光強度を計娜し，退元へモクロピン（H

 られて生体と相互作用した後，光倹活器で倛出さ扎応光强然を通光强度という。

（第1の誎越）

底は即児成分を含みながら全体としては不规甽にくきく昰動している。この迸莩

 えたことによむ変理であこのかを㽬系者が判断することができない。従って，従来技術によると，計測開始時の通過光強原を要涯㑑として処理していたためこの恶準値にするために被捙者を安静にし，信号が安定するまで長時間待たなければ計則がてきないという問通があった。

従来ずがい胥の下の大脳皮質を発生•受光妾子とファィハにより光点光㓯する
状䜿を喚として，すなわち計測点を骎数有し計測することについては何等開示ち

たかを挨出することは国勧で西つた。

本扫明は，従来攱煎のこれらの問题を㬴洪するものである。

（第3日覀垷）

 るかが区别できなかった。
一方，生体の局所的な変化に由乐する而洝䟞辱の変化のみを倹出したい势合があ E．
位という）が作在し，体体の任意の機能に対応して脱における能部位の血䚳至

㠵を伴い局所の血液勖恐のおが变化してもその信号は怪きの中に埋没するため区別することは园韭である。

Summary of the Invention
本発明の目的は以ヒの采通を解決し，間易な核出器を用い。さらに知峙間での
黙を阶像化すこ方法を头現すこことである。
 から局所的な血液现悲践化を分碓区別して計湘することを目的とする。
（第1の詶題に対して）

 （ェ）は次の（」）泔で表才されも。ここで 1 は計㳔時閰である。

$$
S m(L)=S L r(t)+S 1(t) \quad(1)
$$

求められた計沺信号と予测した無負盾骎号を囘時に表示することにより，計測㑦
 のでむこかの划断を谷易にする。
 に入うし，その閔数が無貪荷の信岁に收適にフィットする上うに皆小二乗流管で不定係数を䚿定することにより行うことができる。また，刍何信号SI（と）は宿

 できる。
一すこ上うに決定することもできるし，各便何的間のみをカバーするように假《

度が得られる。
（第2の証题に対して）

䝔する分雄器をもつ。

推定計到位置とは，光照射器と受光器との中問部に存在するもので，より年体的に説明すると前密な推定計測位趈とは，光照射器によって照射された尘体表面位畠から坴体の受光面面位惪までの中問部位となるものである。しかし，ここで の光照时器と受光器とは距锥が接近しているため，実旨的にはこの光照射器の宁心と受光器との問の距致の中間に苦きかえても特に問題とならない。夏に，この中間位甶を求める1つの方法として生体に光照射器から光を照射し，光照射器と対称に位面に配点された2つの受光器で俉号を検出する。その信号の差分信号を とり，分信号とカが吾しベルになるように2つの受光器を調整して骎光器の位
 して求めることができる。

抰出位置に到至する光密度の空問特性は，表面近倸においては表面より敬选する

問位置での区度が気も高くなるからである。1：祀推定計洲点及び上記計测点に対

＂．
信号によって待るようにしてむよい。

淢家に開って決まる。
（第3の䛙足に対して）

位芭が見出せない場合は，光照射位莑を受位せしめ捙出位置を見出すことが出来 る。すなわち睖心器のように所望計測位蕳を採すことができる。

出すむことで，外来起䦎の䊒新を除去することができっ。
 ができた。

 mm 程生の近くで，通過光を利用すむことになり，100から200mm程㞔の

 ！主なすち大朕皮質に到していることが知ら扎ていることが，例えば，バトリッ ク・タブリユ・マコーミック（Patric W．McCormic）他によむ「赤外光の大学内

 osurs．，7ô，315（1992））により倖管されている。また，照射区び涣出位罧の中点
検出された先には技も多く合まれていこことが，生体中の光伝挰特性から知られ ている。この特性として列えば，シェカオ・フェン（Shechao Feng）他によろ
 Carlo simulation of photon path dishribution in multiple scatterine medi a）」，1993年エス・ビィ・アイ・イー発行の全誠䟿気 1888 巻，ランダム
 s of photon qigration and imaging in random media and tissues，1898， 78 （1993））により報吉されていむ。
 と受光手段を必业とすむが，後述の夷施例にホすように，訣分的位潞の測定には，

Brief Descriplion of the Drawings
 フごある。
図である。
 ための眊であむ。

时間攽代を寝すダラフであも。

䇡 7 叫は，上記実形例におけるトボグランィ画称の刑例を示すグラフであ こ．
 ある。
読甽する六めの四である。

 であま。
 であこ。

閶である。
國である。

 であむ．
 だあむ。
 である．及び
 である。

Bridescription of the Preferred Embodiments

（実施列1）

以下，本発明の実施例について説明する。
図さは，本発明による生体光計測装置の一実施例の構成を示す。本実施例は，生体
化量）の計測に適用した例である。脳の特定部位は生体の特定譏能（例えば指等身体 の一部を動かす等）の琂御に関連しており，その特定赋能を動作することで，脳の特定部位の血液動態が変化する。上記特定機能が働くような負荷，例えば，指を動かす等を加え，血液動態変化を計測し，樋の部位を表す 2 次平面画像に等高線図として表示することが本実施例の生体光計測装置を用いて行うこと螯できる。

－－3

図に示すように，本実施例は，波長の異なる椱数の光源2a～2d（光源2aと2 c 及び光源 2 b と 2 d はそれぞれ可視から近赤外钼域の同波長）と，上記複数の光源 2 a 及び 2 b （2c及び2c）の光ををそれぞれ互いに異なった周波数の発振器1a及び1b（lc及び1d）で強度変調する変調器と，強度変調吴れた光をそれぞれ光 ファイバー 3a及び3b（32c及び3c）を通して結合する結合器4a（4b）か らの光を光ファイバー 5a（5b）を介して被検体である被検者6の頭皮上の異なる位萓に照射する䙈数の光照射手段と，上記複数の光照射手段の光照射位徝の近くに上記光照射位置から等距離（ここでは 30 mm とする）の位置に先端が位䈯するように䙉数の光袷出用光ファイバー $7 \mathrm{a} \sim 7 \mathrm{~d}$ 及び光検出用光ファイバー $7 \mathrm{a} \sim 7 \mathrm{~d}$ のれ ぞれに設けられた光検出器 $8 \mathrm{a}-8 \mathrm{f}$ からなる䙉数の受光手段とが設けられてる。 6

本の光袷出用光ファイバー 7 a －7fで，生体通猧光を光ファイバーに集光し，それ ぞれ光祸出器 $8 \mathrm{a} \sim 8 \mathrm{f}$ で生体通過光が光電変换される。上記受光手段は変検体内部 で反射された光を検出し承気信号に変換すもので，光検出器8としては光電子増倍管 やフォトダイオードに代表される光電変换素子を用いる。
［14］
光検出㖇 $8 \mathrm{a}-8 \mathrm{f}$ で光電変換された生体通過光造度を家わす電気信号（以下，生体通過光弦度信号とする）は，それぞれロックインアンプ $9 \mathrm{a} \sim 9 \mathrm{~h}$ に入力される。 ここで，光検出器 8 c 及び 8 d は，光ファイバー 5 a 及び 5 b の両方から等距譱にあ る光検出光ファイバー 7 c 及び 7 d で集光される生体通過光逗度を検出しているため，

光検出器 8 c 及び 8 d からの信号を 2 系統に分蜼し，ロックインアンプ 9 c と 9 e 及 び 9 d と 9 f に入力する。ロックインアンプ 9 a ～ 9 d には発振器 1 a 及び 1 b ，そ して，ロックインアンブ $9 \mathrm{e}-9 \mathrm{~h}$ には発振器lc及びldからの強度変調周波数が参照周波数として入力されている。従って，ロックインアンプ9a～9dからは光源
 $9 \mathrm{e}-9 \mathrm{~h}$ からは光源 ${ }^{2 C}$ C 及び事dに対する生体通猧光強度信号が分離されて出力さ

ロックインアンプ9e～ 9 h の出力である分離をれた各波長毎の通過光強度信号を アナログーテジタル変噯器 1 0 でアナログーデジタル変换した後に，計算機11の内部又は計算機11の外部にある記聪语置12に格納する。計測中あるいは䅂了後，計算裏 11 は上記記嵪装置に記憶された通過光强度信号を使用して，各検出点の検出信号から求められる酸化及び還元へモグロビン澴度の相対変化量を演算し，襀数の計測点mの経時情竍として記慞装置12に格納する。上記演算については後で詳しく説明 する。䒾示制御部30は上記記聪手段12に記懓された信 CRT等の表示装置13 の表示信号に変換し，表示装置13に表示する。上記表示信号は測定位置を被検体の表示平國の座標に変換し，その座標位置の強度信号（酸化又は還元へそグロビン濃度 の相対変化量）等高線表示する信号とする。

10016

本実施例による生体光計測装置を用いることで，生体中の酸化及び還元へモグロビ ン㵋度の相対変化量を簡易かつ高速に計測することができる。光入射点（光照射位置）及び光検出点を増やす構成は，光源の強度変調周波数及び光源及び光検出器及びロッ クインアンプを増やせば良いので扩張は容易である。本生体光計測装置を用いると，分光及び光照射位堛は强度変調周波数で分離することが可能であるため，光照射位置 を増加した場合でも，各光照射位置での照射光の波長数が計測される吸収体数と同数 あれば良く，特に光照射位置毎に照射光の波長を換える必要はない。従って，用いる照射光の波長数が少なく，波長によって異なる散乱の影響による誤差を小さくするこ とができる。
（－7）

図女は，生体光計測挂置を伎用した本発明による画像作成方注の一実施例を説明す るための図で，上記方法における光入射点，光検出点及び計測点の開倸を示す。本定施例の奋像作成方法は，被検者の頭部における酰化及び還元へモグロビン浪度の相対
 いる左歓頭部に各4点の入射及び検出点を設けて生体通過光强度を計測し，右手指の運動と左手指の違動を負荷として与えた場合の測定結果を画像化する方法である。

$$
1-87
$$

図に示すように，被検者 16 の左则頭部に光入射点17a～17dと検出点18a ～18dを配置した。ここで，各光入射点と各検出点の対応関俰は，17a－18a， $17 \mathrm{a}-18 \mathrm{~b}, ~ 17 \mathrm{~b}-18 \mathrm{a}, ~ 17 \mathrm{~b}-18 \mathrm{~b}, ~ 17 \mathrm{~b}-18 \mathrm{c}, ~ 17 \mathrm{~b}-18$ d，l7c－18b，17c－18c，17d－18c，17d－18dの10組あ る。また，各対応する光入射点と検出点の踄離は 30 mm である。さらに，各咬出点 の計測信号から求められる酸化及び阌元へモグロビン澴度の相対変化皿の時間変化は，前記シェカオ・フェン（Shechao Feng）他による「多重散乱媒体中での光子移動路分布 のモンテカルロシミュレーション（Monte Carlo simularionsof photon parh distribution in multiple scattering media）

of photon migration and imaging in random media and uissues，1888，78－1993す）に記載されて いるように，各対応する入射点と検出点の中間の情報を最も
多く反映しているので，計測点19a～19jを各入射点と検出点の対応関係の中心
 うな二次元平面に等高結，渨洗，色識別図として素示する。

（0）

次に，本発明による上記各光検出点における計測信号から各へモグロビン渨度の相対変化量，すなわち生体の特定諼能（例えは指等身体の一部を動かす等）が動作する ことによる湔の特定部位のへモグロビン嶩度の変化を求める方法の一実施例について説明する。

図年は，図产の上記完施例におらける生体光計測装置の検出点18a～18dの1つ の点における計測信号14と訫測信号14から求められる予測無負荷信号15の䅅時変化を麦すグラフである。グラフの栱㛙は計測時間を表わし，縦朝は相対濃度変化量 を表わしている。予測帯負荷信号15は，計測信号14から，負荷を与えた時間（貝荷時間）Ttと員荷後信号が元に戻るまでの時間（䈠和時間）T2における信号を除 き，負荷前時間 T 1 と員荷後時間瞥／における計測信号14に対して任意関数を最小二采法を用いてフィッティングし求たものである。本実施例では，任意関数を 2 次の線形多項式，各時間はT1＝40秒，T2＝30秒，Tt＝30秒，T3＝30秒と して処理している。

10－201

図4侍，1 つの計測点における酸化及び還元へモグロビンの暧度の相対変化量（以下，それぞれ $\Delta C o x y$（t）信号2 0 及び $\Delta C d e o x y(t)$ 信号21とする） の時間変化を表わすグラフである。グラフの横軸は計測時間を表わし，稚谛は祖対澴度変化量を表わしている。また，斜線で示した時間が負菏印加時間（右手指の逜動期間）である。上記相対変化量は図3に表示される 2 波長の計測信号14と予測無負荷信号15から，酸化及び還元へモグロビン（HbO2，Hb）の濃度の負荷印加によ る相対変化量を以下の演算処理で求める。

```
#1)
```

波長 1 における予測無負荷信号 S tr（ λ ，t）と光源強度 I O（ λ ）の関倸は，生体中での光減裏を散乱と吸収に分離することで，以下の（2）式で示される。
$-\operatorname{Ln}\{\operatorname{Str}(\lambda, t) / \operatorname{IO}(\lambda)\}$
$=\varepsilon \operatorname{oxy}(\lambda) \cdot \operatorname{Coxy}(t) \cdot d+\varepsilon \operatorname{deoxy}(\lambda) \cdot \operatorname{Cdeoxy}(t) \cdot d+A(\lambda)+S(\lambda)$
ここで，
$\varepsilon \operatorname{oxy}(\lambda)$ ：波長 λ における酸化へモグロビンの吸光係数
$\varepsilon \operatorname{deoxy}(\lambda):$ 波長 λ における遠元へモグロビンの吸光保数
$\mathrm{A}(\lambda)$ ：波長入におけるへモグロビン以外による吸収による減亜
S（ λ ）：波長入における敬乱による減衰
$\operatorname{Coxy}(\mathrm{t})$ ：計測時間 t における酸化へモグロビン湎度
Cdeoxy（t）：計測時間 tにおける還元へモゲロビン浱度
d ：生体内での（注目領域における）実効的光路長

である。

100221

また，計測信号 S m（ $\lambda, ~ t)$ と光源強度 I 0 （ λ ）の関係は，以下の（3）式で示される。
$-\operatorname{Ln}(\operatorname{Sm}(\lambda, t) / \operatorname{IO}(\lambda)\}$
$=\varepsilon \operatorname{oxy}(\lambda) \cdot\{\operatorname{Coxy}(\mathrm{t})+\operatorname{Coxy}(\mathrm{t})+\operatorname{Noxy}(\mathrm{t})\} \cdot \mathrm{d}$
$+\varepsilon \operatorname{deoxy}(\lambda) \cdot\left\{\operatorname{Cdeoxy}(\mathrm{t})+\mathrm{C}^{\prime} \operatorname{deoxy}(\mathrm{t})+\mathrm{Ndeoxy}(\mathrm{t})\right\} \cdot \mathrm{d}+\mathrm{A}^{\prime}(\lambda)+\mathrm{S}^{\prime}(\lambda) \cdot \cdot \cdot(3)$
ここで，
$\operatorname{C} \operatorname{cxy}(\mathrm{t}):$ 計測時間 t における負荷印加による酸化へモグロビン淟度の変化
C＇deoxy（t）：計測時間tにおける負荷印加による還元へモグロビン濃度の変化
Noxy（t）：雑音又は話測時間 \ddagger における酸化へモグロビン㵋度の高周波畄らぎ
Ndeoxy（t）：雑音又は計測時間 t における㩊元へモグロビン濃度の高周波榉らぎここ
 すなわち，負荷により生じる計測信号変化は酸化及び還元へモグロビン煺度の変化の みによるとすれば，（2）及び（3）式の差分は以下（4）式で示される。 （0－2－3）
$\operatorname{Ln}\{\operatorname{Str}(\lambda, t) / \operatorname{Sm}(\lambda, t)\}=\varepsilon \operatorname{oxy}(\lambda)\left\{C^{\prime} \operatorname{oxy}(t)+\operatorname{Noxy}(t)\right\} d$

$$
\begin{equation*}
+\varepsilon \operatorname{deoxy}(\lambda)\left\{C^{\prime} \operatorname{deoxy}(t)+\operatorname{Ndeoxy}(t)\right\} d \tag{4}
\end{equation*}
$$

ここで，負荷による酸化及び還元へモグロビン澴度相対変化呈の時間変化をそれぞ れ $\Delta C o x y(t), ~ 及 ひ ゙ \Delta C d e o x y(t)$ で表し，以下の式で定義する。
$\Delta \operatorname{Coxy}(\mathrm{t})=\left\{\mathrm{C}^{\prime} \operatorname{oxy}(\mathrm{t})+\operatorname{Noxy}(\mathrm{t})\right\} \mathrm{d}$
Δ Cdeoxy $(\mathrm{t})=\left\{\mathrm{C}^{\prime}\right.$ deoxy $\left.(\mathrm{t})+\mathrm{Ndeoxy}(\mathrm{t})\right\} \mathrm{d} \cdot$
ここで，普通dを特定することは困難であるため，これらの浱度変化量の次元は濃度と距㒕dの積となっている。

（0－2－4）

しかし，（5）式で距離dは Δ Coxyと $\Delta C \operatorname{deoxy}$ 同様に作用するため，（5）式を各へモグロビン濃度の相対変化量とする。計測に二波長用いると，得られる（4）式 は，ΔC oxy（t）及び $\Delta C \operatorname{deoxy}(t)$ に対する二元业立方程式となり，各波長毎の
及び $\Delta C_{\text {deoxy }}(t)$ が求まる。さらに，負荷時間及び緩和時間以外における Δ Coxy （ t ）及び ΔC deoxy（ t ）が表わすものは，C^{\prime} oxy（ $\left.t\right)=0$ ， C C＇deoxy（ t ）＝ 0 とおけるので，雑晢もしくは生体起因の酸化へ
モグロビン濃度及び還元へモグロビンの高周波援らぎを表わしていることになる。上述の処理によって時間 $0 \sim 140$ 紗にわたって求めたものが図4の 4 Coxy （t）信号 20 及び $\Delta \mathrm{Cd} \mathrm{e} o \mathrm{xy}$（t）信号21である。

図告及び図もは，それそれ被検者の左手指及び右手指の運動を負荷として，上記各計測点の酸化へモグロビン漫度の相対変化量の時間変化から作成した等高縭画像（ト ポグラフィ画像）を示す。トボグラフィ面像を作成する方注は，負荷印加時間（図 \mathbf{L}^{5} の斜線期間）中の視対変化量 C Coxy（t）信号 20 の時間皘分値（時間平均値で もよい）を計算機l1で計算し，各計測点間の値はX浯方向及びY軸方向に線形に補間して作成したものである。トポグラフィ画像としては，図䯩及び図高に示すような
 の比較から，明らかに右手運動時に特定の位置において酸化へモグロビン濃度が増加 していることがわかる。この様な空間的分布の情報を画像として素示方ることにより計測結果の訫識を迅速かつ容易にしている。また，図占及び図复に示した画像は，負何印加時間中の濃度相対変化量の時間積分値で作成したが，同一計測時間毎の各計測点の酸化へモグロビン浱度の相対変化量によって同様にトホグラフィ画像を作成する ことも可能である。前記作咸した複数のトポゲラフィ画像を，計測時間の順に従って表示あるいは動画として表示すれば，酸化へモグロビン濃度の相対変化量の時間変化 を捉ちえることができる。

10－6）

さらに，任意1計測点の箴化へモゲロビン渨度の相対変化量の時間変化と自他計測点の酸化へモグロビン澴度の相対劦化量の時間変化の自己及び相互相関関数を計算し，各計測点における相関関数よりトポグラフィ画像を作成することもできる。各計測点 における相関関数は，時間ずれっで定義される関数であるから，同一時間ずれ τ にお ける相関関数の値よりトボグラフィを作成し，ェの順に栚って表示あるいは動画とし

ここでは，酸化へモグロビン檂度の相対変化量を代表的に用いて說明しているが，還元へモグロビン澴度の相対変化室あるいは酸化及び還元へモグロビン吡度の相対変
 ることができる。

1002－7）
 23 と重ねあわせた表示例を示す。トボグラフィ画像 22 は，生体の機能に関連して変化した脳の血液動態の変化であるため，璃表面画像と重ねあわせて素示することが望ましい。監表面画像23は3次元MRIあるいは3次元X線CTで計測し表示する。 トポグラフィ面像 2 2 は，各計測点の座標を腅表面に位置するように座徱変換し，座標変换した後の各計測点間の値を䜌間してトポグラフィ画像を作成する。作成したド ポグラフィ互像2 2 と腅表面奋像 23 を重ねあわせて表示する時，重ねたトポグラフィ画像22の色を半透明として，下に位畕方る腅表面画像が透けて見えるようにする。

（0028）

図8／は，計測点座県変換方法を説明する図を示す。3次元MRIあるいは3次元X
置して撮影するど，撮影した形態情報から皮府及び骨像24と脳像25とマーカー像 26 を表示することができる。上記摄影像は，3次元的な座標情報を有している。そ こで，マーカー像 26 が示す計測点 27 を通り，計測点 27 における皮有表面もしく はマーカー像 26 の底面に対して垂線 28 を計算し，脳像 25 と交わる点㐫座標変換 した計測点29とする。本宫施例で示したように，脳機能の計測の場合には，負荷に相関のある血液動態変化は，主に脑表面（大脳皮質）で生じていることがわかってい る。前記理由より，生体の形態情報を用いることで，計測点を座標変摖する深さを知 ることができる。しかし，計測対象を筋肉等他の生体器官とした場合には，形㮣情報 から座標変語する深さを知ることができない場合がある。前記の様な計測に本方洼を用いる場合には，モンテカルロ法による数値計算で，生体内の光伝播をあらかとめ計算し，計測信号に最も大きく㝒与する深さを求め，前記求められた深さに計測点を座摽変換する＝

 るちのである。

列えは，計測点を重心点とする任意サイズの正方画菜を各欲啷点に設定し，各画素を六計測点の値にあらかしめ対応させた崄淡あるいは色で汽買した画像や，各画素を各計测点の値に対応した撩あるいは線の長さで表示する捹グラフ画像で表示する。
（実施例2）
また，全ての面像表示方法において色を用いる際の配色は自由に選択方ることができ
 することが望ましい。その理由として，動䐗血は赤，静䐗血は青というイメージが定着 しているからである。刨えば，正の計測健の大小を赤色采の浸淡で負の計侧値の大小を吉色系の㦈淡で表示する。
本発明による第2の完施例を示方。
図 10 は，計測信号と予測無負荷信号の表示例である。表示されている計測信号 1 10 a及び計測信号110bは，ロックインアンブ9aからの出力信号であり，予測無員荷信号 1 1 1 aと111bは各計測信号から計算された（計票方法は後述）。予測無員荷信号111aと111bを表示㥄荁に表示す る。骎示されているグラフの檱朝は計測時間を㐮うし，縦軸は生体光計測装置により計測された触過光弦度を表わす計測信号の相対値である。

－

被検者に対して負荷を印加しな場合には，負何印加開始時刻を表わす負侕開始マー ク112と頁荷印加終了時刻を㤗わす負荷終了マーラ113直線で表示方る。本実施例では，右手の運郎を文配する大脑皮質領域を頭皮上から頭蓋骨を通して計測して おり，負荷として右手あるいは左手の運動を与えている（負荷 1 及び負荷 3 は右手适動，負荷 2 及び員荷 4 は左手違動）。図 10 には計測時間の全信号が表示されている が，任意の時間間昵（刨えは，負荷時間の前後を含む時間間隔）のみを表示すること も容易である。また，予測無負荷信号111a，lllbなそれまでの経待変動の延長線上で任意の時間先まで表示することにより，計測中に計測信号110a，110 bと予測無負荷信号111a，l11bを実時間で同時に表示することも可能である。
言示することで，生体中に血液動態の変化が生じた時に，篗察者が判断することが容易になる。なお，この先追いして実時間で表示した予測無負荷信号は，予測無負荷信号の計算か磄定した段階で袁示し直すようにするとよい。

（1）

予測無負何信号111a，111bは，計測信号110a，110bから，負哥を与えた時間（員荷時間）及び員荷を取り除いたあと信号が元に戻るまでの洔間（繯和時間）における信号を除き，峣った期間の信号に任意の関数を最小二禁法を用いてフィッ ティングすることで求める。ここで，任意の関数と緩和時間は員荷の種䅡や訪測湯所 によって異なるため，計測の目的等に合わせて入力装置わから入力方る。本実施

例では，任意関数を 5 次の多項式，䈠和時間を 30 秒として処理している。また，信号の表示は，観察者が見やすいように信号毎に色あるいは緑稹を変えることも可能で ある。

（0017）

（田いA及び田いB）
隹は，計測信号と予測無負何信号の盖分信号の表示例であり，図10中の計測信号110a及び110bと予浰無負荷信号111a及び111bの差分を計算した ものである差分信号114a及び114bの波形を麦示莣還に表示している。表示さ れているグラフの横朝は計測時間を表わし，維掊は相対的な差分信号強度を表わして いる。さらに，被検者に対して負荷を印加した場合には，負荷印加開始時刻を表わす負荷開始マーク112と頁荷印加終了時刻を表わす負荷終了マーク113を直線で表示する。また，本グラフは0を中心としたグラフとなるので甚線115を表示する。 －8

本実施例では，波形114a，ll4bを光源波長每に異なる座標䩜上に表示して いるか，同一座標軸上に重ねて表示することも可能である。また，表示には，観察者 が見やすいように色あるいは線稫を変えて表示することも可能である。

囲12ARび图12B

なは，負荷印加によるHbO2とHbの煨度の相対変化量（以下，それぞれ Δ Coxy，Δ Cdeoxyとする）を表わすグラフの表示例である。図10中の訫測信号11 0 a及な゙110bと予測無負荷信号111a及び111bから（5）式によって与え られる Δ Coxy信号 116 aと Δ Cdeoxy信号 116 bの波形を表示装䐈に表示してい る。素示されているグラフの蟥軸は計測時問を表わし，桠軸は Δ Coxyと Δ Cdeoxyの値を表わしている。さらに，負荷開始マーク112，負荷終了マーク113，及び基線115も表示する。本実施例では，計測時間の全区間が表示されているが，任意の時間間隔（例えば，負荷時間の前後を含む期間）のみを表示することも可能である。
上に重ねて表示しても構わない。さらに，各信号の色もしくは各信号の線種を変えて表示することも可能で，例えば Δ Coxy信号116aを赤采統の色で表示し，また， ΔC deoxy信号ll6bを緑系統の色で表示すれは，観察者も直感的に理解しやすい。本発明の計測方法及び表示方法によると，負徛と計測信号との相関が分かりやすく，計測信号から摇らきが除去されているので信号の精度が高い。

（019）

図13は，各員荷時間毎の Δ Coxy負荷時間皘分値117a，ΔC deoxy員何時間積
 4 b を負咶時間每に時間積分して \triangle Coxy負荷時間積分値117aと C Cdeoxy頁何時間禎分値117b求め，表示装置に負荷香号毎に立体㮮グラフで表示している。こ こで，樍軸は責荷番号を表わし，緶軸は Δ Coxy頁荷時間積分値及び $\Delta C d e o x y$ 員何時間積分但を表わしている。ここで，$\Delta C o x y$ 負鬲時間平均値及び ΔC deoxy負荷時間平均値を表示することも可能である。また，表示には，観察者が見やすいように色を変 えて表示することも可能である。

100－

図14は，生体光計測装置を用いて複数の計測位置で計測した場合の表示例を示す。 ここでは，計測部位を頭部とし，頭部上に 4 点計測位置を設定した場合の例を説明す る。
本表示例では，被検者の計測部位像118と，設定した計測位置を素わす計測位置 マーク119a～119dと，各計測位買に対応しグラフ121a～121dと，計測位置とグラフの対応関係を示す指示線120a～120dとを，表示装置に表示す る。ここで，計測部位像118としては，頭部モテル図あるいはMRI㝨置で代表さ れるような画像診断装置で振影された被検者本人の計測部位断層画像あるいは計測部位3次元画像を用いることができる。

〔実施刨3〕

本発明による生体光計測装置の完施例3の概略梅成を図15に示す。
光源201から発せられる光をレンズ采を用いて集光し，光源用光ファイバー20 2 に入射する。光源から発せられる光は，外来起因の雑音を除去するために発拝器 2 23 により100 Hz ～ 10 MHz 程度の任意の周波数 f で強度変調されている。光源用光ファイバー 202 は光ファイバー連結器 203 a を介して光照射用光ファイバー 204 と按続しているため，光源からの光は光照射用光ファイバー 204 に伝達し，光照射位置205より被検体206に照射される。用いる光の波長は生体内の注目物質の分光特性によるが，Hbと H b O2 の漫度から酸素铇和度や血液量を計測方る場

合には600nm～1400nmの浪長範囲の光の中から1あるいは䙉数波長選択し て用いる。光源としては，半導体レーザ，チタンサファイアレーザ，発光タイオード等を用いることができる。

［－QT3］

被検体206を通過して出射する光を検出するための 2 本の光㭘出用光ファイバー 207 a及び 207 bを，被㭓体 206 上の異なる 2 箇所に配置する。本実施例では，上記 2 本の光検出用光ファイバー 207 a と 207 b を光照射位置 205 を対称中心 として点対称の 2 箇所に配置する。光照射用光ファイバー 204 と光検出用光ファイ バー 207a，207bは，表面を黑色に浩装された光ファイバー固定部材208で回定されている。また，光照射用光ファイバー 204 ，光検出用光ファイバー 207 a，207b及び光ファイバー固定部材 208 は，簡便を期するために光検出ブロー フとして一体化されており，詳細については後述する。光検出用光ファイバー 207 a， 207 b は，光ファイバー連結器 $203 \mathrm{~b}, ~ 203 \mathrm{c}$ を介して光検出器用光ファ イバー 209a，209bに連結しているため，光検出用光ファイバー 207a，2 07 b で検出された通過光は，光検出器 210 a ， 210 b まで伝達し，光検出器 2 10 a ， 210 b で光電変換され，通過光強度が電気信号強度として出力される。光検出器210a，210bとしては，例えばフォトダイオードや光電子垻倍管などの槏な光奄変換紊子゙を用いる。

नOOT4

光検出器210aと210bから出力された通過光强度を表わす電気信号は，それ ぞれロックインアンプ224aと224bで光源の光㧧度変調周波数成分のみ抽出を れる。ロックインアンプ224aからの出力は，対数増偪器225aで対数変換され犬後に差酎增幅器211の負㮀に入力され，ロックインアンプ224bからの出力は，対数增幅器225bで対数変換された後に差動増幅器211の正極に入力される。そ の結果として，異なる 2 カ所の位置での通過光強度の差分信号が，出力信号として差動増幅器211より出力される。差動増幅器211からの出力信号を逐次A／D変換器212でテジタル信号に変換し，計算機213に取り込み素示装置214に時系列 アータとして表示する。

－

ここで，図15に示すように，局所的に血液動態か変化する領域215が，光検出用光ファイバーの視餜216bのみに含まれていれぼ，計測される対数差分信号は局所領域215の血液動態の変化のみを反映していることになる。近赤外光に対しては血液中の主成分であるへモグロビンが光吸収に対して支配的に觔くことを前提に，計測される対数差分信号の恴味を以下に説明する。

「1）

計測時間を t ，光源波長を入，照射光強度を $10(1)$ ，酸化へモグロビンと還元へモグ ロビン漞度をそれそれCox（t），Cdeox（t），局所領域215で変化した酸化へモグロビ ン浸度と還元へモグロビン濃度をそれぞれ $\Delta \operatorname{Cox}(\mathrm{t}), \Delta \mathrm{Cdeox}(\mathrm{t})$ ，光源波長入に対す る酸化へそグロビンと還元へモグロビンの吸光係数をそれぞれ $\mathrm{Ox}(\lambda)$ ，$\overline{\cos } \operatorname{deox}(\lambda)$ ，散乱とへモグロビン以外の吸収による減衰をDs，散乱によって生じる重み係数をd とすると，光袷出器 210 b で検出される通過光強度信号 $1 \mathrm{~d}(\mathrm{t})$ は下式（6）で表さ れ，光検出器 210 a で検出される通過光强度信号 I d＇（ ）は下式（7）で表される。

```
#007)
```

$$
\begin{align*}
I d(t) & =\operatorname{Ds} \cdot \exp [-[\varepsilon \operatorname{ox}(\lambda)(\operatorname{Cox}(t)+\Delta \operatorname{Cox}(t)) \\
& +\varepsilon \operatorname{deox}(\lambda)(C \operatorname{deox}(t)+\Delta C \operatorname{deox}(t))] d] I O(t) \tag{6}
\end{align*}
$$

$I d^{\prime}(t)=D s \cdot \exp [-[\varepsilon \operatorname{ox}(\lambda) \operatorname{Cox}(t)+\varepsilon \operatorname{deox}(\lambda) \operatorname{Cdeox}(t)] d] I O(t)$

次に，（6）式と（7）式の自然対数をとった後に，（6）式から（7）式を減算 すると，次式（8）が得ちれる。（8）式の左辺は計測された対数差分信号である。
$\ln \left[I d(t) / I d^{\prime}(t)\right]=-[\varepsilon \operatorname{ox}(\lambda) \Delta \operatorname{Cox}(t)+\varepsilon \operatorname{deox}(\lambda) \Delta \operatorname{Cdeox}(t)] d$

－［001－8）

ここで特に，光源波長として805nmさl0nmを用いて計測すると，

$$
\begin{equation*}
\varepsilon \operatorname{ox}(805 \pm 10) \fallingdotseq \varepsilon \operatorname{deox}(805 \pm 10) \tag{9}
\end{equation*}
$$

であるので，（8）式は定数Kを用いて

$$
\ln \left[I d(t) / I d^{\prime}(t)\right]=-[\Delta \operatorname{Cox}(t)+\Delta C \operatorname{deox}(t)] \cdot K \quad(10)
$$

と書き直方ことができる。従って，光源波長 $805 \mathrm{~nm} \pm 10 \mathrm{~nm}$ を用いて計測きれ た対数差分信号は，血液量の変化量 $[\Delta \operatorname{Cox}(\mathrm{t})+\Delta \mathrm{Cdeox}(\mathrm{t})]$ に相当する値（以下，相

対血液変化量という）を表している。また，光源に用いる波長数を 2 波長（ $11, \lambda 2$ ） にし，各波長に異なる強度変調周波数（f1，f2）を与え，ロックインアンブで周波数分能すれば，各波長の通過光靬度信号を計測することができる。従って，（8）式 が各波長で成り立つので，次の（11）式及び（12）式からなる連立方程式を導く ことができる。
－10）

$$
\begin{align*}
& 1 \mathrm{n}[\operatorname{Id}(\lambda 1, \mathrm{t}) / \operatorname{Id}(\lambda 1, \mathrm{t})] \\
& =-[\varepsilon \operatorname{ox}(\lambda 1) \Delta \operatorname{Cox}(\mathrm{t})+\varepsilon \operatorname{deox}(\lambda 1) \Delta \mathrm{C} \operatorname{deox}(\mathrm{t})] \mathrm{d} \tag{array}
\end{align*}
$$

$1 \mathrm{n}[\mathrm{Id}(\lambda 2, t) / \operatorname{ld}(\lambda 2, t)]$

$$
\begin{equation*}
=-[\varepsilon \operatorname{ox}(\lambda 2) \Delta \operatorname{Cox}(t)+\varepsilon \operatorname{deox}(\lambda 2) \Delta \operatorname{Cdeox}(t)] d \tag{12}
\end{equation*}
$$

吸光係数 $\varepsilon \operatorname{ox}(\lambda 1), \varepsilon \operatorname{ox}(\lambda 2), \varepsilon \operatorname{deox}(\lambda 1), \varepsilon \operatorname{deox}(\lambda 2)$ は既知であるので，醛化へモ グロビンの変化量に相当する値 $\Delta \operatorname{COX}(\mathrm{t}) \mathrm{d}$ と還元へモクロビンの変化量に相当する $\Delta C \operatorname{deox}(t) \mathrm{d}$ を，（11）式及び（12）式を計算譏213内で解くことで求めるこ とができ，求められた相対変化豈の時系列テータを表示装置214上にグラフ表示す る。さらに拡張して波長数を増かし，dを消去，または微量にあるへモグロビン以外 の吸光物質濃度の相対変化量を求めることも可能である。

（00－20）

また，図16に示すように，ロックインアンプ，対数増幅器，差動増幅器を使用せ ずに，光検出器210a，210bからの検出信号をそれぞれA／D変換器212で テジタル信号に変化した该，計算機 213 内で F F T 処理をして光源の強度変調周波数に相当する信号のみを抽出し，異なる 2 カ所の検出位置での通過光強度の対数差分 を上还の計算過程と同樣の手䐓で計算して，求められた相対変化量を時系列アータと して表示装置214上にグラフ表示することもできる。

$10-21$

図17に光検出プローフの一例を示す。国17A（a）は光桧出プローフの一断面を示し，17 1 は光愌出プローブを被検体接触面から見た図を示している。光検出プローブは，1本の光照射用光ファイバー 204 と 2 本の光検出用光ファイバー 207 a ， 207 b と表面を黒色に塗装した金属又はプラスチック製の光ファイバー固定部材208からなり，それぞれの光ファイバーには光ファイバー逳結哭203a，

203 b ，203cが接統されている。それぞれの光ファイバーの屈曲㤖を保つため には，複数の光フフイバーで構成する。光ファイバーの素材としては，プラスチック か石兵を用いる。本光祫出ブローブを生体に使用する場合には，报検体接触画217 を弾力のあるスボンジなどで覆う。

1002 2

光検出用光フアイバー 207a，207bの検出面の大きさは目的や被検体の状態 に応して変える必安があるが，例えば脳機能の計測を行う場合には，断面形状を径1 $\mathrm{mm} \sim 20 \mathrm{~mm}$ 程度の円形あるいは1辺1 mm～20 mm程度の正方形とする。，また， 2本の光梖出用光ファイバー 207 a ，207bの配置位置は，光照射用光ファイバー 204 から距龍 $\mathrm{r} ~(\mathrm{r}=5 \mathrm{~mm} \sim 50 \mathrm{~mm}) ~$ の位置にここでは対称的に配置する。距離rと光湌出用光ファイバー 207a，207bの断面形状の晎なる複数種類の光検出プローブを用意しておき，計測目的に応して交換することで，簡便な計測が可能と なる。光の到遠深度は光源からの距就 r とほほ等しいため，脳の大脳皮質程度の深さ であれば頭部麦面から頭蓋骨を介して計測することが可能である。

1002－31

光検出プローブにおいて光検出用光ファイバー 207の配徝にはさまざまな菿様が考えられる。狛えば図18に示すように，光照射用光ファイパー 204から等号揇 r の位置に4本の光検出用光ファイバー 207 a ， 207 b ， 207 c ， 207 d を配置し，任意の 2 本の光検出用光ファイバーを選択して計測することができる。また，光ファイバーを用いず，レンズ系を用いたり，固定部材 208 光源や光検出器を惪接設㖵することもできる。

＋24

図19に，本発明による光計測装置を生体の脳の計測に使用した例を示す。光ファ イバー逴結哭 $203 \mathrm{a}, ~ 203 \mathrm{~b}$ ， 203 c と，光照射用光ファイバー 204 と，光検出用光ファイバー $207 \mathrm{a}, ~ 207 \mathrm{~b}$ と，光ファイバー固定部材 208 からなる光校出プローフを，コム製の固定用ベルト218で被検体206に固定する。光熙射用光ファイバー 204 は光ファイバー連結哭 203 a を介して光源用光ファイバー 20 2 に接続されており，光検出用光ファイバー 207a，207bはそれぞれ光ファイ バー連結器 203 b ， 203 c を介して光検出器用光ファイバー 209 a ， 209 b

に接続をえている。光計測蔆置219前面バネルには，光源用光ファイバー 202と光検出器用光ファイバー $209 \mathrm{a}, ~ 209 \mathrm{~b}$ の接続部，出力信号詞整つまみ220，出力信号値表示空 2 2 1，及び表示㥄置 2 1 4 がある。光計測䔖置219内部には，差動増栺器や A / D 変掏器，マイクロプロセッサー，光源，光検出器，光スイッチ， その他必要な電気回路が配置されている。

－2051

出力信号値表示窓221には2䓢所で検出される通過光強度の対数差分信号値が表示されており，出力信号調整つまみ220を用いて対数差分信号値のオフセット値を決定する。例えぼ，被検体の脳内部において局所的な血液動龍の変化が無い時に，2箇所で検出される通過光強度の対数差分信号が 0 になるように調整方る。その後計測 を開始し，対数差分信号の時系列データ222が表示装置214上にグテフ素示され る。また，上速したような演算を行い，局所の血流量あるいは酸化へモグロビン量あ るいは還元へモグロビン量の相対変化量時間変化をグラフ表示する。

1006

〔完施例4〕
本発明による生体光計測蒋置の実施例 4 の概略搆成を図 20 に示方。
光源201から発せられる光をレンズ系を用いて集光し，光源用光ファイバー 202 に入射する。光源から発せられる光は，外来起因の雑音を除去方るために発掁器 22 3 によって100 Hz～10 MHz 程度の任意の周波数で強度変調されている。光源用光ファイバー 202 は光ファイバー連結器 203 a を介して光照射用光ファイバー 204 と接続しているため，光源からの光は光照射用光ファイバー 204 に伝逜し，光照射位置205より被検体206に照射される。用いる光の波長は生体内の注目物芹の分光特性によるが，HbとHbO2 の湿度から段素㿣和度や血液量を計測する場合には 600 nm ～ 1400 nm の波長範囲の光の中から1あるいは複数波長選択し て用いる。光源としては，半導体レーザ，チタンサファイアレーサ，発光ダイオード等を用いることができる。

（7）

被検体 206 を通過して出射する光を検出するための 4 本の光検出用光ファイバー $207 \mathrm{a}, ~ 207 \mathrm{~b}$ ， 207 c ， 207 d を，被柍体 206 上の異なる 4 箇所に配置

する。本宗施例では，2交の光検出用光ファイバー 207bと207cを光照射位置 205 を対称中心として点対称の 2 箇所に配置し，光照射位置 205 の重心点を原点 として光検出用光ファイバー 207 b の重心点を通るような半直楾上に光検出用光ファ イバー 207aの重心点が存在するように光検出用光ファイバー 207aを配連し， さらに，光照射位貴205の重心点を原点として光検出用光ファイバー 207cの重心点を通るような半直線上に光検出用光ファイバー 207 d の重心点か存在するよう に光検出用光ファイバー 207 d を配置する。光検出用光ファイバ -207 a と光検出用光ファイバー 207dの重心点が上記半直線上に存在していればどこに配置して もよいが，本実施例では前記光照射位置 205 を対称中心として点対称でかつ光検出用光ファイバー 207bと207cの外側に配置する。ここで，光照射用光ファイバー 204 と光桧出用光ファイバー $207 \mathrm{a}, ~ 207 \mathrm{~b}, ~ 207 \mathrm{c}, 207 \mathrm{~d}$ は，表面を量色に涪菨した金属犁の光フフイバー固定部材 208 で固定されている。光検出用光 ファイバー $207 \mathrm{a}, ~ 207 \mathrm{~b}, ~ 207 \mathrm{c}, ~ 207 \mathrm{~d}$ は，光ファイバー連結器 203 b， $203 \mathrm{c}, ~ 203 \mathrm{~d}$ ， 203 e を介して光検出器用光ファイバー $209 \mathrm{a}, ~ 20$ 9 b ， $209 \mathrm{c}, ~ 209 \mathrm{~d}$ に連結しているため，光検出用光ファイバー 207 a ， 2 $07 \mathrm{~b}, 207 \mathrm{c}, 207 \mathrm{~d}$ で検出された通過光は，光湌出器 $210 \mathrm{a}, 2 \mathrm{l} 0 \mathrm{~b}$ ， 210 c ， 210 d まで伝達し，光検出器 210 で光電変換された通過光強度が䉓気信号強度として出力される。光検出器 210 としては，例えばフォトダイオードや光電子増倍管等の光電変換素子を用いることができる。

40028）

光検出煰210a及び210bで出力された通過光強度を表わす雪気信号は，それ ぞれロックインアンプ224aと224bで光源の強度変調周波数成分のみを抽出さ れる。ロックインアンプ224aからの出力は，対数增幅器225aで対数変採され た後に差稘増偪器2llaの負極に入力され，ロックインアンプ 2 2 4 b からの出力 は，対数增幅器 225 b で対数変換された後に差動増幅器 211 a の正極に入力され る。光検出䛴 210 c 及び210dで出力された通過光強度を素わす乗気信号は，そ れぞれロックインアンプ224cと224dで光源の強度変調周波数成分のみを抽出 される。ロックインアンブ 224 d からの出力は，対数増幅器 225 d で対数変換さ れた後に差動増幅哭211bの負極に入力され，ロックインアンプ224cからの出

力は，対数竲湎煰 225 c で対数変换された後に差動増蝠器 211 b の正極に入力さ れる。さらに，差動増幅器2llaからの出力を差動増幅器211cの負極に入力し，差動增幅器211bからの出力を差動增幅器211cの正㮀に入力する。その紋果と して，異なる 4 カ所の位酋での通過光强度の対数差分信号が，出力信号として差動増偪器211cより出力される。差動増幅器2llcからの出力信号を逐次，A／D杸換器212でデジタル信号に変換し，計算機213に取り込み表示装置21．4に時系列アータとしてグラフ表示する。

な血

ここで，図20に示すように，局所的に血液動態が変化する領域215が，光検出用光ファイバーの視野 2 1 6 b のみに含まれていれば，差動増幅器 2 1 1 c よう出力 される通過光強度の対数差分信号は，局所的な血液動龍の変化のみを反映しているこ とになる。近赤外光に対しては血液中の主成分であるへモグロビンが光吸収に対して支配的に值くことを前提に，差動増脂器 211 c より出力される対数送分信号の意味 を以下に説明する。

73
計測時間を t ，光源波長を λ ，照射光強度を $\mathrm{I} O(\mathrm{t})$ ，酸化へモグロビンと還元へモ グロビン渨度をそれぞれCox（t），C deox（t），局所領域215で変化した酸化へモグロ ビン暧度と還元べモグロビン淟度をそれぞれ $\Delta \operatorname{Cox}(\mathrm{t}), \Delta \mathrm{Cdeox}(\mathrm{t})$ ，光源波長入に対 する酸化へモグロビンと還元へモグロビンの吸光係数をそれぞれ $\varepsilon \operatorname{ox}(\lambda), \varepsilon \operatorname{deox}(\lambda)$ ，光検出器210bと210cで検出される通過光強度に含まれる散乱とへモグロビン以外の吸収による減衰をDs1，光検出器210aと210dで検出される通過光強度 に含まれる散乱とへモグロビン以外に吸収による減衰をDs2，光検出器 210 b と 2 $10 c$ で検出される通過光強度に含まれる散乱によって生しる重み係数をd1，光検出器210aと210dで検出される通過光強度に含まれる散乱によって生じる重み係数をdと方ると，光検出器210cc゙検出される通過光强度信号 Idi（t），光検出器 210 d で検出される通過光強度信号 Id2（t），光検出器210bで椟出される通過光強度信号 Id1＇（t），及び光検出影210aで検出される通過光強度信号Id2＇（t）は，そ そぞれ下式（13）～（16）で表きれる。

－10031

$I \mathrm{~d} 2(\mathrm{t})=\mathrm{Ds} 2 \cdot \exp [-[\varepsilon \operatorname{ox}(\lambda)(\operatorname{Cox}(\mathrm{t})+\Delta \operatorname{Cox}(\mathrm{t}))$
$+\varepsilon \operatorname{deox}(\lambda)(C \operatorname{deox}(\mathrm{t})+\triangle \mathrm{C} \operatorname{deox}(\mathrm{t}))] \mathrm{d} 2] I \mathrm{O}(\mathrm{t}) \quad\left(\begin{array}{ll}1 & 4\end{array}\right)$
$I d 1^{\prime}(t)=\operatorname{Ds} I \cdot \exp [-[\varepsilon \operatorname{ox}(\lambda) \operatorname{Cox}(\mathrm{t})+\varepsilon \operatorname{deox}(\lambda) \mathrm{C} \operatorname{deox}(\mathrm{t})] \mathrm{d} 1] I O(\mathrm{t})$
（15）
$I d 2^{\prime}(t)=D s 2 \cdot \exp [-[\varepsilon \operatorname{ox}(\lambda) \operatorname{Cox}(t)+\varepsilon \operatorname{deox}(\lambda) C \operatorname{deox}(t)] d 2] I O(t)$
（16）
（0032
次に，（13）式と（14）式の自然対数をとった後に，（13）式から（14）式を箔算すると，次式（17）が得られる。
$\ln [\mathrm{Id} 1(\mathrm{t}) / \mathrm{Id} 2(\mathrm{t})]=1 \mathrm{n}[\mathrm{Ds} 1 / \mathrm{Ds} 2]-[\varepsilon \operatorname{cox}(\lambda)(\mathrm{Cox}(\mathrm{t})$
$+\Delta \operatorname{Cox}(\mathrm{t}))+\varepsilon \operatorname{deox}(\lambda)(\mathrm{Cdeox}(\mathrm{t})+\Delta \mathrm{C} \operatorname{deox}(\mathrm{t}))](\mathrm{d} 1-\mathrm{d} 2)(17)$
（15）式と（16）式の自然対数をとった後に（15）式から（16）式を減算す ると，次式（18）が得られる。
$1 \mathrm{n}\left[\mathrm{Id} 1^{\prime}(\mathrm{t}) / \mathrm{Id} 2^{\prime}(\mathrm{t})\right]=1 \mathrm{n}[\mathrm{Ds} 1 / \mathrm{Ds} 2]-[\varepsilon \operatorname{ox}(\lambda)(\operatorname{Cox}(\mathrm{t})$
$+\Delta \operatorname{Cox}(\mathrm{t}))+\varepsilon \operatorname{deox}(\lambda)(\operatorname{Cdeox}(\mathrm{t})+\Delta \operatorname{Cdeox}(\mathrm{t}))](\mathrm{d} 1-\mathrm{d} 2) \quad(18)$
（17）式の左辺は差動増譡器211bの出力を表しており，（18）式の左辺は差動増偪器211aの出力を表している。ここで，（17）式より（18）式を減算す ると次式（19）が得られる。
\＃03
$1 \mathrm{n}\left[(\mathrm{Id} 1(t) / \mathrm{I} \mathrm{d} 2(t))\left(\mathrm{I} d 2^{\prime}(t) / I d l^{\prime}(t)\right)\right]$
$=-[\varepsilon \operatorname{ox}(\lambda) \Delta \operatorname{Cox}(\mathrm{t})+\varepsilon \operatorname{deox}(\lambda) \Delta \operatorname{Cdeox}(t)](\mathrm{d} 1-\mathrm{d} 2) \quad$（19）
（19）式の左辺は，差動増偪㗊211cからの出力，すなわち計測された対数差分信号を表している。

－－－

ここで特に，光源波長として805nm士10nmを用いて計測すると，前述の （9）式の関係が成立するので，（19）式は定数Kを用いて下式（20）のように書き直すことができる。

$$
\begin{align*}
& \ln \left[(\operatorname{Id} 1(t) / I \mathrm{~d} 2(t))\left(I \mathrm{~d} 2^{\prime}(t) / I \mathrm{~d} 1^{\prime}(t)\right)\right] \\
& =-[\Delta \operatorname{Cox}(t)+\Delta \operatorname{Cdeox}(t)] \cdot \mathrm{K} \tag{20}
\end{align*}
$$

10037
従って，光源波長 $805 \mathrm{~nm} \pm 10 \mathrm{~nm}$ を用いて計測された対数差分信号は，相対血液変化亘 $[\Delta \operatorname{Cox}(\mathrm{t})+\Delta \operatorname{Cdeox}(\mathrm{t})]$ に相当する値を表している。
また，光源に用いる波長數を 2 波長（ $11, \lambda 2$ ）にし，各波長に異なる強度変調周波数（f $1, \mathrm{f}$ 2）を与え，ロックインアンプで周波数分離すれば，各波長の通過光強度信号を訫測することができる。従って，（19）式が各波長で成り立つので，次の （21）式及び（2 2）式からなる連立方程式を導くことができる。 （0）

$$
\begin{aligned}
& 1 \mathrm{n}\left[(\mathrm{Id}(\mathrm{~d} 1, \mathrm{t}) / \mathrm{I} \mathrm{~d} 2(\lambda 1, \mathrm{t}))\left(\mathrm{Id} 2^{\prime}(\lambda 1, \mathrm{t}) / \mathrm{I} \mathrm{~d} \mathrm{I}^{\prime}(\lambda 1, \mathrm{t})\right)\right] \\
& =-[\varepsilon \operatorname{ox}(\lambda 1) \Delta \operatorname{Cox}(\mathrm{t})+\varepsilon \operatorname{deox}(\lambda 1) \Delta \operatorname{Cdeox}(\mathrm{t})](\mathrm{d} 1-\mathrm{d} 2) \quad \text { (21) } \\
& 1 \mathrm{n}\left[(\operatorname{Id} 1(\lambda 2, \mathrm{t}) / \operatorname{Id} 2(\lambda 2, \mathrm{t}))\left(\operatorname{Id} 2^{\prime}(\lambda 2, \mathrm{t}) / \operatorname{Id} 1^{\prime}(\lambda 2, \mathrm{t})\right)\right] \\
& =-[\varepsilon \operatorname{ox}(\lambda 2) \Delta \operatorname{Cox}(\mathrm{t})+\varepsilon \operatorname{deox}(\lambda 2) \Delta \mathrm{C} \operatorname{deox}(\mathrm{t})](\mathrm{d} 1-\mathrm{d} 2) \text { (22) }
\end{aligned}
$$

吸光係数 $\varepsilon \operatorname{ox}(\lambda 1), \varepsilon \operatorname{ox}(\lambda 2), \varepsilon \operatorname{deox}(\lambda 1), \varepsilon \operatorname{deox}(\lambda 2)$ は既知であるので，酸化へモ グロビンの変化量に相当する値 $\Delta \operatorname{Cox}(\mathrm{t})(\mathrm{d} 1-\mathrm{d} 2)$ と還元ヘモグロビンの変化量に相当する $\Delta \operatorname{Cdeox}(\mathrm{t})(\mathrm{d} 1-\mathrm{d}$ ）を，（21）式及び（22）式を計算機2l3内で解く ことで求めることができ，求められた相対変化量の時系列アータを麦示装冝214上 にグラフ表示する。さらに拉張して波長数を増やし，（d1－d2）を消去，または微量 にあるへモクロビン以外の吸光物質濃度の相対変化量を求めることも可能である。

また，図21に示すように，ロックインアンプ，対数増幅器，差動増幅器を娔用せ ずに，光検出器 210 a ， 210 b ， 210 c ， 210 d からの検出信号をそれぞれ A／D変換器212でデジタル信号に変換した後，計算機213内でFFT処理をし て光源の強度変調周波数々相当する信号のみを抽出し，異なる 4 力所の検出位置での通過光強度の対数差分を上还の計算過程と同様の三覑で計算した後，求められた相対変化量を，時系列テータとして表示装置2l4上にグラフ表示することもできる。

100381

［実施例5〕

本発明による生体光計測装置の実施例5の概略構成を図22に示守。
光源201aと201bから発せられる光をレンズ系を用いて集光し，それぞれ光源用光ファイバー 2 0 2 aと 202 b に入射する。各光源から発せられる光は，外来起因の雑音を除去するために各発振品 223 a ， 223 b によって 100 Hz ～ 10 MHz 程度の晎なる任意の周波数 f で強度変調されている。ここでは，光源201a の強度変調周波数をf1とし，光源 201 b の強度変調周波数を f 2 とする。光源用光 ファイバー 2 0 2 aは光ファイバー連結器 203 aを介して光照射用光ファイバー 2 04 a と接祮しており，光源用光ファイバー 202 bは光ファイバー連結器 203 c を介して光照射用光ファイバー 204 b と接続しているため，各光源からの光は光照射用光ファイバー 204 a と 204 b に伝達し，光照射位㖵 205 a と 205 b より被検侉206に照射される。また，参照光を得るために光照射用光ファイバー 204 a， 204 b の途中で分波器 $226 \mathrm{a}, ~ 226 \mathrm{~b}$ を用いで分波し，光検出器 210 a と210cで各光源の适度を電気信号に変換する。光検出器210aから出力される光源201aの参照光強度信号はロックインアンプ224aに入力し，発振器223 a からの参照周波数をもとに分離される。ロックインアンプ224aからの出力は，対数増幅器5aに入力されて対数変煥された後に差動増幅器211aの負極に入力さ れる。光検出别210cから出力される光源201bの参照光強度信号はロックイン アンプ 2 2 4 dに入力し，発振器 223 b からの参照周波数をもとに分離される。ロッ クインアンプ 224 d からの出力は，対数增幅器 225 d に入力されて対数変换され た後に差動増偪器2l1bの負極に入力する。用いる光の波長は生体内の注目物質の分光特性によるが，Hbと H b O2 の湄度から酸素㿣和度や血流量を測定する場合に は $600 \mathrm{~nm} \sim 1400 \mathrm{~nm}$ の波長範囲の光の中から1あるいは複数波長選択して用 いる。光源としては，半導体レーザ，チタンサフィアレーザ，発光ダイオード䓁を用 いることができる。
－－－3－
被検体206を通過して出射する光を検出するために1本の光検出用光ファイバー 207を，被検体206上の光照射位置205aと205bから等距墭の位置に配置 する。ここで，光照射用光ファイバー 2 0 4 a と 204 b と光検出用光ファイバー2 07 は，表面を黒色に装された光ファイバー固定部材 208 で固定されている。光

楥出用光ファイバー 207 は，光ファイバー飓結器 203 b を介して光検出器用光ファ イバー 209に運結しているため，光検出用光ファイバー 207 で検出された通過光 は，光検出器 210 b まで伝達し，光検出器 210 b で光電変換され通過光強度が電気信号強度として出力される。光検出器 210 b としては，例えばフォトダイオード や光電子増倍管等の光電変換喜子を用いる。

－04

光検出䱈210bで出力された通過光強度を表す電気信号は，光源201aに対す る通過光强度信号と光源 201 b に対する通過光强度信号を含んでいるため，ロック インアンプ 224 b で光源 201 a に対する強度変調周波数成分のみを抽出し，ロッ クインアンプ 224 c で洸源 201 b に対する弾度変調周波数成分のみを抽出する。 ロックインアンプ 224 b からの出力は，対数増幅器 225 b で対数変換された後に，差動増偪器 211 aの正極に入力される。ロックインアンプ224cからの出力は，対数増蝠器225．c で対数変換された後に，差動増幅器211bの正極に入力される。 その結柰として，差動増偪器211aからは，光源201aの强度と光源201aに対する通過光強度の対数差分信号が出力信号として出力され，差動増幅器211bか らは，光源201bの强度と光源201．aに対する通過光強度の対数差分信号が出力信号として出力される。さらに，差動増幅器2llaからの出力を善動増幅器211 cの負極へ入力し，差動増幅器211bからの出力を差動増幅器211cの正極へ入力すると，差動增瞕器 211 c から光源強度の搯らきを除去した通過光強度の対数差分信号が出力される。差動㙂幅器2llcからの出力信号を逐次，A／D変掿器21 2でテジタル信号に変換し，計算咢213に取り込み表示装置214に時系列テータ として表示する。

101

ここで，図22に示すように，局所的に血液動龍が変化する領域215が，光検出用光ファイバーの視时 2 1 6 bにのみ含まれていれほ，計測される対数差分信号は局所的な血液動龍の変化のみを反映していることになる。近亦外光に対して波血液中の主成分であるへモグロビンが光吸収に対して支配的に侽くことを前提に，計測される対数差分信号の意宲を以下に説明する。

計測洔間を t ，光源波長を入，照射位置 5 b からの照射光強度を $I O$（ $)$ ，照射位宣 5 a からの照射光缯度を $10^{\prime}(t)$ ，分波器 226 b からの参照光強度を $\mathrm{I}_{\mathrm{r}} \mathrm{f}$（ ），分波槑 22 6 a からの参照光強度を $I r^{\prime}(\mathrm{t})$ ，分波器の参照光への分波比率をa，すなわち

$$
I O(t): I_{r}(t)=I 0^{\prime}(t): I^{\prime}(t)=1: a
$$

とし，酸化へモグロビンと還元へモグロビン泿度をそれぞれ $\operatorname{Cox}(\mathrm{t}), \mathrm{Cdeox}(\mathrm{t})$ 局所領域215で変化した酸化へモグロビン澴度と還元へモグロビン濃度をそれぞれ $\mathrm{A} C$ ox（t），$\Delta C \operatorname{deox}(t)$ ，光源波長 λ に対する酸化へモグロビンと還元へさグロビンの吸光係数をそれぞれ $\varepsilon \operatorname{ox}(\lambda), ~ \varepsilon \operatorname{deox}(\lambda)$ ，散乱とへモグロビン以外の㖟収による減变を Ds，散乱によって生じる重み保数をdとすると，光検出器210．bで検出される光源201bに対する通過光強度信号 Id d ），即ちロックインアンブ 224 c からの出力は下式（23）で表吴れ，光検出㗊 210 b で検出される光源 2 0 1 aに対字る通過光強度信号 I d $d^{\prime}(t)$ ，即ちロックインアンプ 224 b からの出力は下式（24）で表 される。
10043

$$
\begin{align*}
& I d(t)=D s \cdot \exp [-[\varepsilon \operatorname{ox}(\lambda)(\operatorname{Cox}(t)+\Delta \operatorname{Cox}(t)) \\
& \quad+\varepsilon \operatorname{deox}(\lambda)(\operatorname{Cdeox}(t)+\Delta \operatorname{Cdeox}(t))] d] I 0(t) \quad(23) \tag{23}\\
& I d^{\prime}(t)=D s \cdot \exp [-[\varepsilon \operatorname{ox}(\lambda) \operatorname{Cox}(t)+\varepsilon \operatorname{deox}(\lambda) \operatorname{Cdeox}(t)] d] I 0^{\prime}(t) \tag{24}
\end{align*}
$$

次に，（23）式と（24）式の自然対数をとった後に変形すると，（23）式は下式（25）となり，式（24）は下式（26）となる。 －04－4
$\ln [\operatorname{Id}(t) / I O(t)]=1 n[D s]-[\varepsilon \operatorname{ox}(\lambda)(\operatorname{Cox}(t)+\Delta \operatorname{Cox}(t))$
$+\varepsilon \operatorname{deox}(\lambda)(\mathrm{C} \operatorname{deox}(\mathrm{t})+\Delta \mathrm{C} \operatorname{deox}(\mathrm{I})] \mathrm{d}$
$1 n\left[I d^{\prime}(t) / I 0^{\prime}(t)\right]$
$=1 \operatorname{n}[\mathrm{Ds}]-[\varepsilon \operatorname{ox}(\lambda) \operatorname{Cox}(\mathrm{t})+\varepsilon \operatorname{deox}(\lambda) \operatorname{Cdeox}(\mathrm{t})] \mathrm{d}$
さらに（25）式から（26）式を減算すると，次式（27）が得られる。
－5
$\ln \left[\left(\operatorname{Id}(t) / I d^{\prime}(t)\right)\left(I 0^{\prime}(t) / I O(t)\right)\right]$
$=-[\varepsilon \operatorname{ox}(\lambda) \Delta \operatorname{Cox}(t)+\varepsilon \operatorname{deox}(\lambda) \Delta \operatorname{Cdeox}(t)] \mathrm{d}$

ここで，

$$
\begin{align*}
& \mathrm{Ir}(\mathrm{t})=a \mathrm{IO}(\mathrm{t}) \tag{28}\\
& \mathrm{Ir} \mathrm{r}^{\prime}(\mathrm{t})=a \mathrm{I} \mathrm{O}^{\prime}(\mathrm{t}) \tag{29}
\end{align*}
$$

であるから，差動増幅器211aからの出力は
$\ln \left[I d^{\prime}(\mathrm{t}) / a \mathrm{I} 0^{\prime}(\mathrm{t})\right]$
となり，従って，差動增帕器 211 c からの出力は

$$
1 \mathrm{n}\left[(\mathrm{Id}(\mathrm{t}) / \mathrm{Id}(\mathrm{t}))\left(\mathrm{IO} 0(\mathrm{t})^{\prime} / \mathrm{IO} 0(t)\right)\right] \quad(30)
$$

である。（30）式は（27）式の左辺と等しいので，差動増幅器211cから出力 された対数差分信号は（27）式と等価である。
－4－1
ここで特に，光源波長として805nmさ10nmを用いて計測すると，前述の （9）式の関係が成立するので，（27）式は定数K吂用いて下式（31）のように言き直すことができる。

$$
\begin{align*}
& 1 \mathrm{n}\left[\left(\mathrm{Id}(\mathrm{t}) / \operatorname{Id} \mathrm{d}^{\prime}(\mathrm{t})\right)\left(I \mathrm{O}^{\prime}(\mathrm{t}) / \mathrm{IO}(\mathrm{t})\right)\right] \\
& =-[\Delta \mathrm{Cox}(\mathrm{t})+\Delta \mathrm{Cdeox}(\mathrm{t})] \mathrm{K} \tag{31}
\end{align*}
$$

従って，光源波長 805 nm 10 nm を用いて計測された対数差分信号は，相対血液変化量［ $\Delta \operatorname{Cox}(t)+\Delta \operatorname{Cdeox}(t)]$ に相当する値を表している。また，光源に用いる波長数を 2 波長（ $\lambda 1, \lambda 2$ ）にし，各波長と各照射位䐈毎に異なる空度変調周波数（ f
毎の通過光強度信号を計測することができる。従って，（27）式が各波長で成り立 つので，次の（ 32 ）式及び（ 3 3）式からなる連立方程式を導くことができる。 1004
$\ln [(\operatorname{Id}(\lambda 1, t) / \operatorname{Id}(\lambda 1, t))(\operatorname{IO}(\lambda 1, t) / \operatorname{IO}(\lambda 1, t))]$
$=-[\varepsilon \operatorname{ox}(\lambda 1) \Delta \operatorname{Cox}(t)+\varepsilon \operatorname{deox}(\lambda 1) \Delta \operatorname{Cdeox}(t)] \mathrm{d}$
$1 \operatorname{n}\left[(\operatorname{Id}(\lambda 2, \mathrm{t}) / \operatorname{Id}(\lambda, 2, \mathrm{t}))\left(\operatorname{I} 0^{\prime}(\lambda 2, \mathrm{t}) / \mathrm{I} \mathrm{O}(\lambda 2, \mathrm{t})\right)\right]$
$=-[\varepsilon \operatorname{ox}(\lambda 2) \Delta \operatorname{Cox}(t)+\varepsilon \operatorname{deox}(\lambda 2) \Delta C \operatorname{deox}(t)] d$
吸光係数 $\varepsilon \operatorname{ox}(\lambda 1), \varepsilon \operatorname{ox}(\lambda 2), \varepsilon \operatorname{deox}(\lambda 1), \varepsilon \operatorname{deox}(\lambda 2)$ は既知であるので，酸化へモ グロビンの変化量に相当する値 $\triangle \operatorname{COX}(\mathrm{t}) \mathrm{d}$ と還元へモグロビンの変化量に相当する $\Delta C \operatorname{deox}(t) \mathrm{d}$ を，（32）式及び（3 3）式を計算機213内解くことで求めるこ

とができ，求められた相対変化量の時系列テータを京示装置214上にグラフ言示す る。艾らに拡張して波長数を増やし，dを消去，または微豈にあるへモグロビン以外 の吸光物質浱度の相対変化量を求めることも可能である。

$\mathrm{F}-0-8)$

また，図23に示すように，ロックインアンプ，対数増脂器，差動増脂器を使用せ すに，光検出器 210a，210b，210cからの検出信号をそれぞれA／D変換器212でデジタル信号に変換した後，計算譏213内でFFT処理をして各光源の強度変調周波数に相当守る信号のみを抽出し，上述の計算過程と同様の手䐓で計算し て，求められた相対変化豈を時系列テータとして衷示装畳214上にグラフ哀示する こともできる。

（0）

【発男効果才

本発明では，低コストの光照射手段，光検出器を用い，簡単な演算処㫜であるため経涳的な装置で高哀の処理ができ，被定測体の形状を表す平面画像と対応づけた主体機能を画像化ができるので，特に生体の局所定な機能の測定に有効な手股となる。

従来技術によると，皳検者を安静にし信号が安定方るまで待たなければ計測を行うこ とができなかったが，本発明の計測方法によると信号の安定を待たずに計測が可能とな る。また，計測信号から罟らきを賖去することができるので信号の掅度を言めることが できる。

（H頙С）開册

第1の検出位置と第2の検出位置をそれぞれ光照射位置から等距離の位置に設定する と，生体内部の全体的な血液動態変化に伴って，各検出位置における通過光強度信号は等しく変化する。従って，第1の検出位顐における通過光強度信号と第2の検出位置に おける通過光強度信号の対数差分を取ると，全体的な血液動態変化に由来する信号変化 は除去される。さらに，第1あるいは第2の一方の検出位置における通過光強度信号に のみ，局所の血液動息変化に伴う帘化が含まれていれば，通過光強度対数荎分信号は局所の血液動婜変化のみを反映していることになる。

光線は，光照射位篮から生体内に入って光模出位置で生体外に出るまでの間に複雑 な経路を通って種々の生体組緸と相互作用し，散乱や娍衰を受けることになる。本発明 では，光照射位置から等距離の位置で生体から出射する光強度の対数差分をとるため，
号を高䊑度で㭇出できることになる。
实货的

What is Claimed is：
（画橡扎）

1．被検体に可視から近赤外領域の波長の光を照射する複数の光照射手段と，上記光照射手毁から照射され，上記被検体内部で览榭された光を袷出する複数の受光手段と，

上記受光手段で検出された信号を複数の受光手段每にかつ経時的に記憶意篍する記憶优直良手段と，上記記惊戸段に記惊された信号を用いて複数の計測点の計測対象の信号に変
号として表す 画像として表示する面像作成部とをもつことを特徴とする生体光計測茭置。

乙 請求瓄21

上記褆数の光照射手䝘のそれぞれが波長の甼をなる袵数の光源と，上記複数の光源 の光を互いに異なった周波数で変調きる変調器と，変調された䙉数の光を照射位置に導く導波手段とからなり，上記複数の受光手段のそれぞれが上記波長の異なる複数の光源からの光の強度を分龍する分離手段をもつことを特㹈とする生体光計測装惪。

（票求嫧呈）

3，上記分䧸手段が，上記変調器の変調信号で駆動するロックインアンプで梄成された ことを特微とする講捸珼 2 記載の生体光計測装置。

【請求項4】

※ 上記波長の異なる複数の光源の数が計測される光吸収体の㭚類数と同数であること を特徵とする請求項1記載の生体光計測装置。

（青求珼今

5．可視から近赤外領域の波長の光を被検体の複数の光照射位置に照射と，被検体内部 を通過した光を上記複数の光照射位置のそれぞれに対して少なくとも一つの光検出点

をもつことを特微とする画像作成方法。

6．第 1 ステップにおいて上記計測点を上記光照射位置と光検出する位置の中点から，上記被褍体内部への葰検体表面に対する至線上の任意の位徝とし，上記第2ステップ において，上記袙数の計測点で得た光吸収体濃度及び上記縩数の計測点で得た光吸収体渃度を各誀測点問で補間して得た補間光吸収体浱度をトポグラフィ画像として表示 することを特設とする気語求瓄 5 記載の画像作成方注。

【請求璉古】

7．上記光吸収体濃度を任意の時間点における光吸収体澧度又は光吸収体滞度の一定時間の変化量を時間平均したらのを用いて面像を得ることを特微とする馀 5 又は 6記桙の画像作成方法。

8，上記第 2 ステップにおいて，任意の時間間隔で光吸収体澴度又は光吸収体澴度の変化量を永め，各時間間隔ごと連続した経時画像を得ることを特徴とする語求皟 5 又は 6 記載の画像作成方法。

「請承頊 -1

9．上記第2ステップにおいて，磁気共廌及びX線による計測した被検体内部の面像情報を，上記光吸収体演度の情報と共に上記二次元画像と同一画面上で吾ね合わせて恐示することを特徵とする語馀 6 に記载の画像作成方法。

㷣求頊101

10．上記第2ステップにおいて，任当の時間間㸚で光吸収体濃度又は光吸収体濃度の変化量を求め，任意の 1 計測点における上記変化量の時間変化を基準として，他計測点 における上記変化量の時間変化との相関を求め，各時間間隔こと連続した相関関数の経時画像を得ることを特徵とする書我珼 5 又は 6 記載の面像作成方洼。

11．【請求項

生体に負荷を印加する負何時間と負荷を印加しない無負何時間を交互に設けながら生体に光を照射して生体通過光强度を計測する生体光計測方法において，前記負荷時

光計測方法。

諳求垻117

12．各負苛時間の直前に貧荷前予測時間を設定し，各楥和時間の直後に頁荷後予測時間
 る計測信号から計湘信号に含まれる生体由来の摇らぎに相当する信号を予湘すること を特微とする請記載の生体光計測方法。

1 個あるいは複数の不定係数を有する任意関数を設定し，該任意関数が紘和時間を含まない無負荷時間における計測信号に最適に適合するように最小二乗法によって前記不定俰数を決定し，こうして決定された最適適合関数を生体由来の揺らきに相当す

【請求項

な計測信号と予測した生体由来の搢らきに相当する信另の㚇分を演算することを特徵

䎸請求婹
15．予測した生体由来の镨ら ぎに相当する信号と計測信号の比，光源波長に対する酸化 へモグロビンの吸光低数，及び光源波長に対する嗃元へモグロビンの吸光倷数を用い，生体中の酸化へモグロビン濃度と還元へモグロビン漲度の和の相対変化量あるいは酸化へそグロビン浀度の相対峦化量と還元へモグロビン濃度の相対変化量，前記各相対変化量の時間変化，前記各相対変化量を所定の時間にわたって䅠算した禎算相対変化量，又は所定の時間間隔における平均相対変化罙を演算することを特徴とする請を嘖 10 マ1 1 記载の生体光計測方法。

「6．生体に光を照射して生体通猧光強度を計測し，計測信号あるいは計測信号を演算し た信号を麦示装置に表示する生体光計測装置の信号表示方泫において，計測信号に含 まれる生体由来の揺らきに相当する信号を子測し，前記予測した信号を計測信号と共 に表示することを特败とする生体光計測㥄置の信号表示方法。

生体に負荷を印加する負坷時間と負荷を印加しない無負荷時間を交互に設けながら生体に光を照射して生体通過光渞度を計測し，計測信号あるいは計測信号を演算した信号を表示装置に表示する生体光計測装亘の信号表示方法において，前記無員荷時間 における計測信号から計測信号に含まれる生体由来の揺らきに相当する信号を予測し，前記子測した信号を予測乘員俩信号として計測信号と共に素示することを特溦とする生体光計測装置の信号表示方注。

18．生体に員荷を印加する員荷時間と員荷を印加しない無負荷時間を交互に設けながら生体に光を照射して生体通過光強度を計測し，計測信号あるいは計測信号を演算した信号を表示装置に表示方る生体光計測翣惪の信号表示方法において，前記負衍時間に続く緩和時間を設定し，綬和時間を含まない前記無負荷時間における計測信号から計測信号に合まれる生体由来の搯らきに視当する信号を予測し，前記予測した信号を予測無負何信号として計測唐号と共に表示することを特徵とする生体光計測装置の信号麦示方法。

請球買

各負荷時間の直前に負荷前子測時間を設定し，各緩和時間の直後に頁荷後予測時間 を設定し，各負荷時間每に負荷前予測時間における計測信号と負荷後予測時間におけ る計測信号から前記予㣜無頁荷信号を求めることを特徵とする記車の生体光計測淩置の信号表示方泞。

士請求頊

20． 1 伺あるいは複数の不定係数を有する任意関数を設定し，該任意関数が緩和時間を含まない無負荷時間における計測信号に最適に適合するように最小二乗法によって前記不定係数を決定し，こうして決定された最適適合関数を剪記生体由来の摇らきに相
 の信号表示方法。

2／．計測启号と予測無負荷信号の差分を演筫し，演算結果を表示することを特徵とする請求項 17 19／のいすれか1項記載の生体光計測装置の信号表示方法。

（\％

22．予測無負荷信号と訫測信号の比，光源波長に対する酸化へモグロビンの吸光係数，及び光源波長に対する還元へそグロビンの吸光暴数を用い，生体中の酸化へそグロビ ン澴度と還元へモクロビン洆度の和の相対変化量あるいは酸化へモグロビン㴆度の相対変化量と還元へモグロビン䇺度の相対変化量を演算し，前記各相対変化量の時間変化，前記各相対変化量を所定の時間にわたって程算した積草相対恋化暈，又は所定の
 すれか 1 項記裁の生体光訫測装置の信号表示方法。

請求貝2年

き3，異なる信号あるいは計算結果毎に暴なる色あるいは異なる線種を用いて麦示するこ
法。

 17～19 の 17 ずれか 1 項記載の生体光計測㥄置の信号表示方法。

25．計測信号は計測と共に実時間で麦示し，予測無員荷信号は表示されている計測信号 より先の時間まで表示することを特徴とする 17～19）のいすれか1項記載の生体光計測羡置の信号表示方法。

－】

26，襀数の計湘位置に対する複数の信号を，生体の計測部位を示す図と，計溂位置を示 す図形と，計測位置と前記信号との対応を指示する図形とともに表示することを特微

土請
27．計溂部位を示す図としで面像診断装置によって撮影された画像を用いることを特徵 とする気記軍の生体光計測薪置の信号表示方法。

（差分）

28．【丽1生体表面に光を照射する光照射手段と，生体内部を通過して生体表

面から出射する光強度を検出する光検出手段とを借える生体光計測装置において，光照射位置と光険出位置の組み合わせを少なくとも 2 組有し，各組み合わせに対方 る検出信号の対数差分信号を計測信号として用いることを特微とする生体光計測倰置。
29.

語光照射位直から湌出位䐈までの距跣が等しく設定されている少
 28（記戒の生体光話測坟置。
30．対数増幅器と差動增幅器を含み，光検出信号を対数增幅したの ち差致增幅器によって対数差分信号を発生することを特微とする 又記載の生体光訫測挔置。
31．1光照射手段は光源と光照射位嘼の間を結ふ光ファイバーを含み，光検出手段は光祫出器と光検出位置の間を結ふ光ファイバーを含むことを特徵とする虽 28 又は記载の生体光計測装置。
な2．【光照射手段の光ファイバー端部及び光祫出手段の光ファイバー端部を固定した光検出プロープ部と，光照射厅段の光源と光㭘出手段の光袷出㗊と電
計測装置。
33．【光照射位置と第1検出位置と第 2 检出位置と，光照射位軍を原点として第1検出垃吾を通る半直䋎上に設定された第3検出位量と，光照射位置を原点として第 2 検出位置を通る半直線上に設定された第 4 㭘出位置とを有し，第 1 検出位置と第 3 検出位直で検出きれる光検出信号の対数差分信号（第 1 対数差分信号）と第 2 検出位置と第 4 検出位置で検出される通渦光強度の対数差分信号（第 2 対数差分信号）を訫測し，前記第 1 対数养分信号と苐 2 対数差分信号の差分信号を副測するこ

34．生体表面に光を照射する第1の光照射手段と，前記第1の光照射手段からの照射光強度を検出する第1の照射光弦度検出手段と，生体表面に光を照射する第2の光照射于段と，前記第2の光照射手段からの照射光弦度を検出する第2 の照射光弶度㭘出手段と，生体内部を通過して生体表面から出射する第1の光照射手段又は第 2 の光照射手段に起因する光強度を桧出する光検出手段と，前記第 1 の照射光強度検出手段の出力と前記第1の光照射手段に起因する前記光検出手段の出力との

対数差分信号（第1対数差分信号）を発生する手段と，前記第2の照射光強度検出手段の出力と前記第 2 の光照射手段に起因する前記光椎出手段の出力との対数倠分店号
（第 2 対数差分信号）を発生方る手段と，前記第 1 対数差分信号と第 2 対数差分信号
 1 項記臷の生体光計測装置。
35 光光照射手段からの照射光を強度攽調し，光検出手段からの检出信号のうち前記強度変調周波数と同じ周波数成分のみをロックインアンブあるいははフー
 1 項記載の生体光計測装置。
36，照射光の波長数がm，光照射位置の数が n であり，光源の強度
項記或の生体光計測装置。
生体内で血液動㤪の変化に由来して局所的に光の吸収特性が悪化する領域からの信号 が少なくとも 1 つの光検出位置で検出される光強度信号に含まれ，少なくとも他の1 つの光検出位置で検出される光強度信号に含まれないように，生体表面上に光照射位置と光梌出位置を設定して計湖童行うことを特徴とする生体光計測方法。
38 生体内に局所的に光の吸収特性が変化する領域の変化が起こち ない状龍で検出位置の異なる 2 菌所間の対数壴分信号が 0 となるように調整した後に，計測を開始し，差分信号の変位値を計測信号として用いることを特微とする㲤 く28ヌは299いずれかにつ
記䡛の生体光計測方法。

Abstract of the Disclosure

複数の異なる周波数で強度変調された複数波長の光を，生体表面の複数照射位置よ

 り照射し，生体表面の異なる位置により，各波長及び各照射位置のそれぞれに対応す る生体通過光強度の時間変化を計測する。その計測終了後或いは計測中に，各検出点 で検出される複数耚長の生体通過光強度から，生体中の吸収体䘡度変化を求め，更に入射点と各検出点の中点を通る垂線上に計湘点を設定することにより，生体機能を画像化する。更に，生体に由来する揺らきを予測することで計測時間の短縮を図り，更 に予測信号と計測信号とを同時に表示することで計測信号変化の有無を容易に判断可能となり，また更に生体内部を通過した光を，被倹体上の異なる2䑺所（光入射点と等距離）に配置する2本の光検出用手段を用いて検出し，該雨検出信号の対数差によっ て生体内部の全体的な血液動態変化から局所的な血液動想変化のみを分離して局所的血液動態変化を計測可能とした生体光計測装置及び方法。

PRIOR ART

図 10

図13

図14

図15

図23

